If you don't know the fords, don't step in the water!
Contents

- **Polymers**

- *Typical failure mechanisms of plastics*: failure might occur.

- *Failure causes of plastic products*: failure has occurred.
Polymerisation of ethylene $\text{C}_2\text{H}_4 \rightarrow \text{PE}$
Polyethylyene C_2H_4

unbranched

branched
Verdeling Molecuulmassa

- Molecular mass
- Chain length

Diagram showing the distribution of molecular masses with a peak at M_i.
Chain length of PE (C_nH_{2n+2})

- **paraffin** (500 g/mol)
- **glue container** (10^5 g/mol)
- **UHMW-PE** (5×10^6 g/mol)

VeMet
Amorphous and semi-crystalline

A - amorphous structure
B - crystalline region
C - semi-crystalline structure

low binding energy
high binding energy
tie-molecule

VeMet
Bending strength and impact strength as a function of M_n
Viscosity as a function of molecular mass

VeMet
Spoormaker Consultancy in Reliability & Liability of Plastic Products

Injection moulding of thermoplastics

All you need is speed !!!

VeMet
Failure mechanisms and causes

<table>
<thead>
<tr>
<th>Failure Mechanisms</th>
<th>Failure Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• UV-degradation</td>
<td>• faulty ribbing</td>
</tr>
<tr>
<td>• creep & stress relaxation</td>
<td>• difference in stiffnesses</td>
</tr>
<tr>
<td>• environmental stress cracking</td>
<td>• high stiffness of mating parts</td>
</tr>
<tr>
<td>• dimensional stability</td>
<td>• grade and polymer selection</td>
</tr>
<tr>
<td>• static fatigue</td>
<td>• stress concentrations</td>
</tr>
<tr>
<td>• dynamic fatigue</td>
<td></td>
</tr>
<tr>
<td>• wear</td>
<td></td>
</tr>
</tbody>
</table>

VeMet
Fatigue

Failure Mechanisms
- UV-degradation
- creep & stress relaxation
- environmental stress cracking
- dimensional stability
- static fatigue
- dynamic fatigue
- wear

Failure Causes
- faulty ribbing
- difference in stiffnesses
- high stiffness of mating parts
- grade and polymer selection
- stress concentrations
Disentanglement in polymers can occur, resulting in stable crack extension. This is also referred to as static fatigue. Dynamic fatigue is a similar mechanism.
Dynamic crack growth Paris law

\[\frac{da}{dN} = C_d \cdot (\Delta K_I)^m \]

- \(\frac{da}{dN} \): Crack growth per cycle
- \(C_d \): Constant for dynamic loads
- \(\Delta K_I \): Stress intensity difference
- \(m \): Exponent

\[(\Delta \sigma \cdot Y(a/W) \sqrt{\pi \cdot a}) \]
Crack extension

\[\frac{da}{dN} = C_d \cdot (\Delta K_I)^m \]

VeMet
Static fatigue

\[
\frac{da}{dt} = C_s \cdot K_I^n
\]

Crack growth rate

\[
\frac{da}{dt} \quad C_s
\]
Constant

\[
K_I
\]
Stress intensity

\[
n
\]
Exponent

VeMet
Static fatigue crack growth

- Initial crack initiation
- Stable crack extension
- Unstable crack extension

Crack growth rate vs. K_1

- da/dt vs. K_1
- K_{lc}
Polycarbonate spring

Failure Mechanisms
- UV-degradation
- creep & stress relaxation
- environmental stress cracking
- dimensional stability
- static fatigue
- dynamic fatigue
- wear

Failure Causes
- faulty ribbing
- difference in stiffnesses
- high stiffness of mating parts
- grade and polymer selection
- stress concentrations
PC-spring in service position
Photo of PC spring in service position
Spring in unlocked position
Photo of Spring in unlocked position
Polycarbonate (PC) has relatively *smooth molecular chains* and has a low resistance to stable crack extension. It has, however, a large resistance to crack initiation.
Impact & notch sensitivity

Graph showing the impact strength in kJ/m² as a function of notch tip radius in mm for ABS and PC materials. The ISO-standard is also indicated.

Diagram illustrating the setup for a notched impact test with a pointer, hammer, scale, and specimen.
Failed springs

VeMet
SEM of fracture surface (static fatigue)
SEM of fracture surface (dynamic fatigue)
Melt Flow Rate (MFR)

MFR - the mass of polymer, in grams, flowing in 10 minutes through a capillary of a specific diameter and length by a pressure applied via prescribed weights for prescribed temperatures.
Relationship between the Molecular Weight and the MFR for PC (Calibre 300 of DOW Plastics)
Relation MFR-Impact strength

- 0.25 mm notch radius
- 0.20 mm notch radius
- 0.13 mm notch radius

Notched Izod Impact, kJ/m²

Melt Flow Rate, g/10 min (300°C/1.2 kg)
Kid-Sit

Failure Mechanisms
- UV-degradation
- creep & stress relaxation
- environmental stress cracking
- dimensional stability
- static fatigue
- dynamic fatigue
- wear

Failure Causes
- faulty ribbing
- difference in stiffnesses
- high stiffness of mating parts
- grade and polymer selection
- stress concentrations

VeMet
Kid-Sit
Kid-Sit stiffness differences

Extreme high stiffness differences between swivel plate (steel) and the board adjacent to the swivel plate (polymer)
Kid-Sit - cracking

VeMet
Fatigue

S-N curves for some polymers

Semi-crystalline (final material selection PA6 with 30 % glass fibres)

Amorphous (initial material selection)

VeMet
S-N curve of PA66-30GF (flow direction)
Extreme high stiffness differences between swivel wheel plate (steel) and the board adjacent to the swivel plate (polymer)

Bending stiffness $D_{sw} = E_s \cdot I_{na} = 82 \text{ Nm}^2$

$D_b = E_p \cdot I_b = 2.9 \text{ Nm}^2$

$D_{sw} \backslash D_b = 31$
Impact factor ψ

$$\psi = \frac{F_{\text{impact}}}{F_{\text{static}}} = 1 + \sqrt{\frac{2h}{mg}} k_{\text{tot}} + 1$$
Impact factor ψ

$$
\psi \ = \ \frac{F_{impact}}{F_{static}} \ = \ 1 \ + \ \sqrt{\frac{2h}{mg}} \ k_{tot} + 1
$$

$h = 0.1 \ m$
$m = 18 \ kg$
$g = 9.8 \ m/s^2$
$k_{tot} = 22000 \ N/m^2$

$$
\psi \ = \ 1 + \sqrt{\frac{2 \cdot 0.1}{18 \cdot 9.8}} \ 22000 + 1 \ = \ 6.1
$$

VeMet
Kid-Sit FEM calculation I

Very high secondary stresses in the region near the stiffness difference

VeMet
FEM calculation (filliting)

Still very high secondary stresses in the region near the stiffness difference. **Filletting does not help**

ECEFA -IV
UV-degradation

<table>
<thead>
<tr>
<th>Failure Mechanisms</th>
<th>Failure Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• UV-degradation</td>
<td>• faulty ribbing</td>
</tr>
<tr>
<td>• creep & stress relaxation</td>
<td>• difference in stiffnesses</td>
</tr>
<tr>
<td>• environmental stress cracking</td>
<td>• high stiffness of mating parts</td>
</tr>
<tr>
<td>• dimensional stability</td>
<td>• grade and polymer selection</td>
</tr>
<tr>
<td>• static fatigue</td>
<td></td>
</tr>
<tr>
<td>• dynamic fatigue</td>
<td>• stress concentrations</td>
</tr>
<tr>
<td>• wear</td>
<td></td>
</tr>
</tbody>
</table>

VeMet
Weathering
Weathering

1. Definition
2. Sunlight and spectral sensitivity
3. Effect of UV on polymers
4. Attack of bonds
5. Change in mechanical properties
Definition of weathering

Weathering is the adverse response of a *material or product* to climate, often causing unwanted and premature product failures.

Primary Factors of Weathering:

- solar radiation (light energy)
- temperature
- water (moisture/dew)
Weathering

1. Definition
2. Sunlight and spectral sensitivity
3. Effect of UV on polymers
4. Attack of bonds
5. Change in mechanical properties
Solar radiation spectrum
Weathering

1. Definition
2. Sunlight and spectral sensitivity
3. Effect of UV on polymers
4. Attack of bonds
5. Change in mechanical properties
UV-induced reactions

Polymer → \(R^\cdot \)

\(R^\cdot + O_2 \rightarrow RO_2^\cdot \)

\(RO_2^\cdot + R'^\cdot H \rightarrow ROOH + R'^\cdot \)

\(R'^\cdot + O_2 \rightarrow R'O_2^\cdot \)

- Loss of H-atom
- Reaction with \(O_2 \)
- Reaction with a molecule
- Reaction with \(O_2 \)
Hydrogen peroxide & hydroperoxide

\[\text{ROOH} \rightarrow \text{RO} \cdot + \cdot \text{OH} \]
Degradation reactions

- O_2
- R^*
- ROOH
- RH
- ROO
- ROOH
- ROH + HOH
- R^*
- $2R^*$
- ROOH
- ROO
- ROH + HOH
- $2R^*$
- ROO
- ROH + HOH
- $2RH$
- $RO^* + \cdot OH$
Weathering

1. Definition
2. Sunlight and spectral sensitivity
3. Effect of UV on polymers
4. Attack of bonds
5. Change in mechanical properties
Attack on bonds
Pattack on bonds
Transferring of energy
Weathering

1. Definition
2. Sunlight and spectral sensitivity
3. Effect of UV on polymers
4. Attack of bonds
5. Change in mechanical properties
Scission and cross-linking

ECEFA -IV
Chain scission and cross linking
UV - embrittlement

![Graph showing force vs. displacement with UV exposure time points](image)
Polypropene (PP)

![Graph showing degradation of specimens](image)

- ○ degraded specimens
- ● notched specimens

ECEFA -IV
Ultra violet stabilisation (Tinuvin)

Dart drop impact strength [J/mm]

- No Light stabilizer
- TINUVIN® 360
- TINUVIN® 1577

Dart Drop: m=28.75kg, h=1.0 m (5 Sample)

PET-G after 0 months Florida
PET-G after 3 months Florida

Time Florida [months]
Keysaver

Failure Mechanisms
- UV-degradation
- creep & stress relaxation
- environmental stress cracking
- dimensional stability
- static fatigue

Failure Causes
- faulty ribbing
- difference in stiffnesses
- high stiffness of mating parts
- grade and polymer selection

Failure Mechanisms
- dynamic fatigue
- wear

Failure Causes
- stress concentrations
- improper mould design
Construction of KEYSAVER

Detail of click boss

bobber with spool

Keysaver in transparent ABS

Parts of Keysaver with keys to be saved

ROSMOULD 2006
Floating device

6 mm
Functioning and non-functioning KEYSAVERS
Critical points

Dimensions
- Diameter of snap-fit disk
- Height of bosses

Material selection
- Snap-fit disk (PA6)
- Inner housing ABS

Processing and gating
Lay-out of KEYSAVER
Critical dimensions

D_d – diameter of disk
D_b – diameter of boss circle

Force to unclick is depends on:

$$D_d - D_b$$
Macro photo of boss
Equilibrium of water absorption in air

3 % water uptake!!
Deformation of inner house (ABS) – (bw)
Deformation of ABS test bars
Critical dimensions

- **D_d** – diameter of **disk**
- **D_b** – diameter of **boss circle**

Force to unclick is depends on:

$$D_d - D_b$$
Effect of stiffness on scatter

Spoormaker Consultancy in Reliability & Liability of Plastic Products

Stiffness
Failure mechanisms and causes

<table>
<thead>
<tr>
<th>Failure Mechanisms</th>
<th>Failure Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• UV-degradation</td>
<td>• faulty ribbing</td>
</tr>
<tr>
<td>• creep & stress relaxation</td>
<td>• difference in stiffnesses</td>
</tr>
<tr>
<td>• environmental stress cracking</td>
<td>• high stiffness of mating parts</td>
</tr>
<tr>
<td>• dimensional stability</td>
<td>• grade and polymer selection</td>
</tr>
<tr>
<td>• static fatigue</td>
<td>• stress concentrations</td>
</tr>
<tr>
<td>• dynamic fatigue (temperature)</td>
<td>• improper mould design</td>
</tr>
<tr>
<td>• wear (heat, hardness)</td>
<td></td>
</tr>
</tbody>
</table>

VeMet
Adhesive wear
Abrasive wear

A hard deeltje

B ruwheidstop
Pitting as a result of fatigue
Wear
Wear (NX-UHMWPE)
Conclusions

1. Basic understanding of **structure related properties**.
2. Typical **failure mechanisms and causes**.
3. Material and grade selection.
4. Do not rely on injection moulders
5. More education in designing in plastics is necessary
Literature list

Polymers

- McCrum, N.G. et al., Principles of Polymer Engineering, Oxford University Press.
- Peter C. Powell & A.J. Ingen Housz Engineering with Polymers

Failure of Plastics